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Figure 1. FaceLift transforms a single facial image into a high-fidelity 3D Gaussian head representation. Trained exclusively on synthetic
3D data, our pipeline first generates sparse, identity-preserving multiview images of the input head using a diffusion model. These sparse
generated views are then fed into a transformer-based 3D Gaussian splats reconstructor, producing complete and detailed 3D head represen-
tation that generalize remarkably well to real-world human images. Project page: https://weijielyu.github.io/FaceLift.

Abstract

We present FaceLift, a novel feed-forward approach for
generalizable high-quality 360-degree 3D head reconstruc-
tion from a single image. Our pipeline first employs a multi-
view latent diffusion model to generate consistent side and
back views from a single facial input, which then feed into
a transformer-based reconstructor that produces a com-
prehensive 3D Gaussian splats representation. Previous
methods for monocular 3D face reconstruction often lack
full view coverage or view consistency due to insufficient
multi-view supervision. We address this by creating a high-
quality synthetic head dataset that enables consistent su-
pervision across viewpoints. To bridge the domain gap be-
tween synthetic training data and real-world images, we
propose a simple yet effective technique that ensures the
view generation process maintains fidelity to the input by
learning to reconstruct the input image alongside the view
generation. Despite being trained exclusively on synthetic
data, our method demonstrates remarkable generalization
to real-world images. Through extensive qualitative and
quantitative evaluations, we show that FaceLift outperforms
state-of-the-art 3D face reconstruction methods on identity
preservation, detail recovery and rendering quality.

*Work was done when Weijie Lyu was an intern at Adobe Research.
†Corresponding author.

1. Introduction
3D face reconstruction has been a central focus in com-
puter vision and graphics research for decades, driven by
its crucial applications in immersive virtual and augmented
realities, VFX and gaming, digital entertainment, and next-
generation telepresence systems. However, achieving high
quality reconstruction from a single image remains very
challenging. On one hand, the monocular face reconstruc-
tion problem is highly ill-posed – a single 2D image can
be produced by countless different 3D face shapes, creating
fundamental ambiguity. On the other hand, the human vi-
sual system is highly attuned to facial details, making even
subtle artifacts and imperfections noticeable to the eye.

Traditional 3D head synthesis approaches typically use
parametric textured mesh models [32, 60] trained on 3D
scan datasets. While these models enable basic head gen-
eration, the rendered images frequently lack fine-scale ge-
ometric detail, realistic textures, and convincing hair, lim-
iting their perceptual realism and expressiveness. Recent
breakthroughs in image generative models [19, 23] and
novel view synthesis techniques [27, 40] have opened new
possibilities for this research area. Leveraging these devel-
opments, recent works [1, 72] use neural 3D representations
to learn effective 3D head representation from unstructured
real face image datasets [25, 68]. While these datasets im-
prove the realism and diversity of rendering results, they fail
to provide multi-view supervision for modeling 3D consis-
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Figure 2. Comparison with RodinHD. RodinHD [73] trains tri-
plane diffusion with synthetic data, resulting in apparent identity
loss. In contrast, FaceLift achieves better identity preservation and
generalizes effectively to real human portraits.

tency causing view inconsistency and artifacts on the back
of the head. Since diverse multi-view real images are hard
to acquire, RodinHD [73] leverages synthetic multi-view
images to train generative models that directly output 3D
neural representations of the head. However, training solely
on synthetic data often results in significant perceptual iden-
tity loss in the generated outputs, as demonstrated in Fig. 2.

In this work, we present FaceLift, a pipeline for learn-
ing generalizable and high-fidelity single image to 3D face
representation from synthetic head data. To achieve high
quality reconstruction that preserves the input facial iden-
tity, we adopt a two-stage pipeline to first generate identity
preserving multi-view images using a diffusion model [48],
followed by a transformer-based feed-forward reconstruc-
tor to fuse the generated sparse views into a comprehen-
sive 3D Gaussian representation. We train the model with
synthetic images – multi-view renderings of 3D synthetic
human portraits using Blender. We highlight two key tech-
niques for generalizing to real-world images and preserving
input facial identity. First, we emphasize the importance of
reconstructing the input image alongside the view synthe-
sis task in the conditional diffusion model training, which
significantly improved generalization capability in testing.
Second, we demonstrate that training the feed-forward re-
constructor benefits from a two-stage training process: pre-
training on general objects [12] to acquire a rich geometry
and texture prior, followed by fine-tuning on synthetic hu-
man head data to capture head-specific geometry. With our
two-stage approach, we focus on learning identity preser-
vation in the image space during the first stage, achieving
higher input fidelity compared to existing methods.

Comparing with prior art, we achieve three key advance-
ments: (1) robust view consistency through multi-view at-

tention and supervision, (2) improved generalization from
training techniques and foundational model, ensuring accu-
rate identity preservation, (3) high-quality facial texture and
hair details via pixel-aligned Gaussian representation.

We extensively evaluate FaceLift quantitatively and
qualitatively across diverse datasets. Using real multi-
view studio captures [39] and an independent synthetic hu-
man dataset [8], our approach consistently surpasses previ-
ous state-of-the-art methods across all evaluation metrics.
Through extensive testing on in-the-wild portrait images,
we demonstrate that our method reconstructs complete 3D
heads with fine-grained details, accurate identity preserva-
tion, and high visual fidelity. Comparisons and ablation
studies confirm that multi-view consistent training data is
crucial for high-fidelity face reconstruction. Our contribu-
tions are summarized as follows:
• We propose FaceLift, a framework that reconstructs a

high-fidelity 3D head from a single image using view gen-
eration and feed-forward reconstructor.

• Despite being trained solely on synthetic human head
data, our approach shows no domain gap on real-world
images, highlighting both the effectiveness of synthetic
data and our model’s robust generalization capabilities.

• We construct two benchmarks on single-image to 3D
full head reconstruction tasks using the publicly avail-
able datasets Cafca [8] and Ava-256 [39] to quantitatively
evaluate models’ performance on both reconstruction ac-
curacy and identity preservation ability.

• Our comprehensive evaluation confirms that our approach
achieves state-of-the-art performance in reconstruction
accuracy and identity preservation.

2. Related Work
Face Reconstruction. 3D face reconstruction has been
a long-standing challenge in computer vision, with sub-
stantial progress driven by diverse approaches. Vetter and
Blanz [60] pioneer a method for synthesizing 3D faces by
linearly blending multiple 3D templates, now widely known
as blendshapes. This work establishes the foundation for
3D Morphable Models (3DMMs), which represent 3D face
shapes and textures as principal components derived from
scanned data. Subsequent research [5, 6, 32, 34, 47] extend
this framework, enabling the generation of new 3D faces by
manipulating blending coefficients. However, these meth-
ods produce mesh-based representations that lack fine de-
tails and are limited to modeling the front of the face,
excluding hair and 360-degree synthesis. While 3DMM-
based methods have been foundational, recent advances in
deep learning, especially Generative Adversarial Networks
(GANs) [19, 25, 26], have greatly improved 3D face syn-
thesis quality. EG3D [72] uses a tri-plane NeRF represen-
tation with a pose-conditioned StyleGAN2 [26] framework.
Follow-up works [3, 33] achieve single-image-to-3D gen-
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eration through GAN inversion [11]. Despite their success,
these methods can only synthesize near-frontal views. To
overcome this, PanoHead [1] introduces a tri-grid neural
volume representation, enabling full 360-degree head syn-
thesis. Unfortunately, it does not provide a 3D head rep-
resentation for consistent multi-view rendering. Recent ef-
forts explore alternative representations for 3D face recon-
struction from sparse input, such as a single image [17, 42,
61] or few-shot images [7]. However, these methods still
require pre-instance optimization. Rodin [63] and its exten-
sion RodinHD [73] employ an image-conditioned diffusion
model to generate a triplane representation of a human head
for full-head novel view synthesis. Nevertheless, their tri-
plane diffusion model is limited to synthetic data and strug-
gles to achieve high-fidelity reconstructions from real-world
images. For animatable 3D head avatars generations, Mor-
phable Diffusion [10] generates multi-view consistent im-
ages from a single image using a morphable mesh, while
HeadGAP [76] generates 3D animatable head avatars us-
ing few-shot input, leveraging 3D head priors learned from
large-scale data. In contrast, our work focuses on leverag-
ing synthetic training data to produce high-fidelity, detailed
3D Gaussian head models.

Synthetic Human Data. Capturing high-quality 3D data
of real humans requires a controlled studio environment
and costly photography equipment [39]. As an alternative,
large-scale synthetic 3D head datasets have emerged as an
effective and resource-efficient solution for tasks like hu-
man head reconstruction [8, 63, 65, 73] and photorealistic
relighting [9, 71], offering a scalable way to train models
without the restrictions of real-world data acquisition. In-
spired by these previous works, we aim to use synthetic data
to improve the model’s understanding of the human head
and minimize the generalization gap between synthetic data
training and real-world inference.

Image or Text to 3D. Generative models have achieved re-
markable success in 2D image generation with VAEs [28,
58], GANs [19, 25, 26], and diffusion models [23, 48, 54].
Building on this success, extensive research has extended
these models to 3D content generation [18, 41, 43, 66].
Starting with DreamFusion [45], numerous works [36, 46,
51, 57, 64] try to distill NeRF [40, 62, 72] or 3D Gaus-
sians [27] representation from 2D image diffusion using
a Score Distillation Sampling (SDS) loss. These methods
can produce high-quality results but often encounter chal-
lenges such as slow optimization, over-saturated colors, and
the Janus problem. To overcome these challenges, recent
works [30, 31, 35, 37, 53] generate multi-view images with
high consistency, which can be directly used for 3D recon-
struction with neural reconstruction methods [27, 40, 62].
However, optimizing NeRF or NeuS remains far from real-
time performance. Recent advancements in large 3D re-
construction models (LRMs) [24, 30, 56, 74] offer a path-

way to faster 3D reconstruction. Leveraging scalable trans-
former architectures [15, 59] and large datasets like Obja-
verse [12, 13], these models effectively capture generaliz-
able 3D priors. Unlike traditional pre-scene optimization
methods [27, 40, 62], LRMs employ a feed-forward ap-
proach, enabling the prediction of high-quality NeRF, mesh,
or 3D Gaussian representations from sparse images in un-
der a second. However, most of these research efforts are
applied to general objects, with limited or suboptimal re-
sults for 3D head reconstruction.

3. Proposed Method
As shown in Fig. 3, given a single frontal image of a hu-
man face y, our goal is to reconstruct a complete 3D head
G, represented as 3D Gaussian splats, with detailed facial
texture and preserved identity. This requires our system to
have prior knowledge on the geometry structure of a hu-
man face and the ability to synthesis plausible details which
are not visible in the input view. Hence, we train a multi-
view diffusion model fD on synthetic human head data to
generate N views x1

0, x
2
0, . . . , x

N
0 covering 360◦ of the hu-

man head while achieving multi-view consistency and pre-
serving identity. We choose pixel-aligned 3D Gaussians to
obtain the final 3D representation. Compared to NeRFs
and meshes, 3D Gaussians offer explicit volumetric prim-
itives that better capture subtle facial geometry and fine
details. Their semi-transparent kernels naturally model ef-
fects like wispy hair and translucency, which are challeng-
ing for discrete surfaces or density fields. These generated
views x1:N

0 from the diffusion model, along with their cor-
responding Plücker ray coordinates P(1:N), are input into
a transformer-based Gaussian reconstructor fR to predict a
set of 3D GaussiansG. Training of the Gaussian reconstruc-
tor follows a pre-training process on general objects [12]
and a fine-tuning process on synthetic human head data.

3.1. Synthetic Human Head Dataset
We implement a 3D head asset generation pipeline in-
spired by [65]. Our process begins with a collection of
high-quality, artist-created 3D head meshes, which we en-
hance by incorporating detailed facial components, includ-
ing eyes, teeth, gums, and both facial and scalp hair. We
then augment these base models through rigging for pose
variation and blendshape deformation for diverse facial ex-
pressions. The final head models are enriched with a set
of PBR texture maps, including albedo, normal, roughness,
specular, and subsurface scattering maps. At last, we dress
the head model with a collection of clothing assets. The en-
tire pipeline is implemented in Blender and the images are
rendered with Cycles renderer.

To train our networks, we render images (samples shown
in Fig. 4) at 512×512 resolution from 200 unique iden-
tities, each with 50 varied appearances, including differ-
ent hairstyles, skin tones, expressions, clothes, poses, etc.
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Figure 3. Overview of FaceLift. Given a single image of a human face y as input, we train an image-conditioned, multi-view diffusion
model to generate novel views x1

0, . . . , x
N
0 covering the entire head. By generating x1

0 the same as y and leveraging the high-quality
synthetic data, our multi-view latent diffusion model can hallucinate unseen views of the human head with high-fidelity and multi-view
consistency. We then train a transformer-based reconstructor fR, which takes multi-view images x1:N

0 and their camera poses P1:N as
input and generates 3D Gaussian splats G to represent the human head.

Figure 4. Synthetic data examples. Top row: six views for dif-
fusion training. Bottom row: samples of random views for recon-
structor training.

We render our training dataset under two types of lighting
conditions: (1) ambient light and (2) random HDR envi-
ronment light. We render six views for each subject to
train the multi-view diffusion model. For fine-tuning the
transformer-based reconstructor, we render 32 views with
random camera poses.

3.2. View Generation
We model the sparse view generation from a single image
input as a conditional diffusion process. We use a multi-
view diffusion model fD to generate N views, denoted as
X1

0 , X
2
0 , . . . , X

N
0 , given a single front-facing image y and

CLIP text embeddings e1, e2, . . . , eN corresponding to each
generated view. This process is expressed as:
{X1

0 , X
2
0 , . . . , X

N
0 } = fD(y, {e1, e2, . . . , eN}). (1)

We aim to learn the joint distribution of all these views,
conditioning on the input image y and text embedding
e1, e2, . . . , eN . We denote the joint distribution as:
pfD (x

1:N
0 | y, e1:N ) := pfD ({x1

0, . . . x
N
0 } | y, {e1, . . . eN}).

(2)
View Selection. Given a single near frontal view face image
with azimuth α, our multi-view diffusion model generates
six views with azimuths equal to {α, α ± 45◦, α ± 90◦,
α+180◦}, covering 360 degrees of the human head. Eleva-
tion is 0 for all images. We opt for six views as the optimal
balance - fewer views compromise detail quality while more
views become computationally prohibitive for full head re-
construction. An ablation study comparing four, six, and
eight views is presented in Sec. 5.2.

Multi-view Attention. To ensure the consistency of the
generated novel views, we use a multi-view attention mech-
anism to facilitate information propagation and implicitly
encode multi-view dependencies. Our attention module en-
courages multi-view consistency by extending the 2D self-
attention mechanism to 3D and enabling interactions across
views. Instead of treating each view independently, we ap-
ply self-attention across all views simultaneously, allowing
information to be shared between them. Specifically, we
start with an input tensor of shape B×V×H×W×C, where
B is the batch size, V is the number of views, H and W de-
note the spatial resolution of the intermediate feature maps,
and C is the number of feature channels. We reshape this
tensor to B×V HW×C, treating all spatial locations across
all views as a unified sequence of tokens for self-attention.
This design allows the model to learn multi-view correla-
tions by sharing information across views within the atten-
tion layers, enabling it to generate consistent RGB images.
We provide an ablation study on the multi-view attention
mechanism in the supplementary material.
Input View Reconstruction. During Training, we enforce
the first generated view to share the same camera with the
input image. In other words, we reconstruct the input view
in the view generation process. We find this approach,
combined with the multi-view attention mechanism, sig-
nificantly outperforms the alternative strategy of generating
only novel views, which tends to overfit to synthetic train-
ing identities and compromises generalization capability as
we will show in Sec. 5.1 and the supplementary material.

3.3. Multi-view to 3D Gaussians Reconstruction
Transformer-based Reconstructor. We choose pixel-
aligned 3D Gaussians as the final 3D representation. Each
Gaussian Gi is defined by position pi, scale si, orientation
qi, opacity αi, and color features ci. We use a transformer-
based reconstructor fG to obtain 3D Gaussians from gen-
erated multi-view images x1:N

0 and their corresponding
Plücker ray coordinates [44] P1:N :
{Gi}NHW

i=1 ={pi, si, qi, αi, ci}NHW
i=1 =fG(x

1:N
0 , P1:N ),

(3)
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Our fG is a large reconstruction model [24, 74] which fol-
lows the implementation of GS-LRM [74]: the N multi-
view images are concatenated with their Plücker ray co-
ordinates computed from the camera intrinsic and extrin-
sic parameters for pose conditioning. Then, the inputs are
patchified by dividing the per-view feature map into non-
overlapping patches with a patch size of p. Each 2D patch
is then flattened into a 1D vector. Finally, a linear layer L is
utilized to map the 1D vectors to image patch tokens:

{Tn
j }j=1,2,...,HW

p2
= L(Patchifyp(Concat(I

n, Pn))).

(4)
Where {Tn

j } denotes the set of patch tokens for image n,
totaling HW

p2 tokens per image. The set of multi-view im-
age tokens {Tn

j } are concatenated and processed through
a chain of transformer blocks. Each transformer block is
equipped with residual connections [20] and consists of Pre-
LayerNorm [2], multi-head Self-Attention [59] and MLP.
Later, the output tokens from the transformer are decoded
into Gaussian parameters using a single linear layer. Then,
the Gaussian parameters are unpatchified into p2 Gaussians.
Finally, we end up with HW Gaussians for each view,
where pixel encodes one 3D Gaussian.
Two-stage Training. We find that training the transformer-
based reconstructor solely on synthetic human head data
leads to inferior texture details when applied to real-world
images (see ablation study in Fig. 12). We suspect this lim-
itation arises because the synthetic datasets lack geometric
diversity. To address this, we propose a two-stage train-
ing approach in which the reconstructor is pre-trained on
diverse object data [12] and subsequently fine-tuned using
synthetic head data. The pre-training stage enables the re-
constructor to learn a broad prior of diverse geometric struc-
tures, yielding more detailed and clearer textures in deli-
cate facial regions such as the eyes, nose, and ears. The
fine-tuning process then imparts specific knowledge of head
structure, producing smoother and more realistic results.
During training, we randomly select four input views to re-
construct a total of eight views, four input and four novel
views. Following [74], we optimize the model using a com-
bination of MSE and perceptual losses. During inference,
the reconstructor processes the six-view outputs from multi-
view diffusion model to reconstruct the head.

3.4. Real-world Image Inference
For inference on real-world images, since their intrinsic pa-
rameters are unknown, we adopt a camera fov of 50◦, same
as during training. To ensure plausible outputs, we first ap-
ply an MTCNN face detector to estimate the face’s size and
center. The image is then resized and cropped/extended to
match the average face size and center computed from the
training data. We find this alignment compensates for the
unknown intrinsic parameters well, ensuring plausible re-
construction results.

4. Experiments
4.1. Experimental Setup
Evaluation Datasets. To quantitatively evaluate FaceLift,
we establish two benchmarks for single-image to 3D full
head reconstruction tasks using publicly available datasets:
(1) Cafca dataset [8]: We select 40 subjects with 7 to 19
test camera poses each. Since the camera positions are
randomly distributed, we manually select the most frontal
view as input. Note that this synthetic dataset was indepen-
dently developed and differs significantly from our train-
ing dataset. (2) Ava-256 dataset [39]: This studio-captured
dataset contains real human subjects. We sample 10 sub-
jects and 10 test camera poses for our evaluation. More de-
tails in supplemental. To demonstrate our system’s general-
ization capabilities, we also evaluate on a set of in-the-wild
face images for qualitative assessment.

Baselines. We compare our results against three state-
of-the-art methods for single-face 3D reconstruction:
GGHead [29], PanoHead [1], and Dual Encoder [4]. We
perform GAN-inversion to reconstruct 3D head from a
given input image using these models. To emphasize the
importance of utilizing our synthetic human head data for
training, we also compare our method with two methods
that focus on general object reconstruction: Era3D [31]
and LGM [56]. More comparison results with mesh-based
methods are provided in the supplementary material.

We further developed a baseline, Our MV + LGM, which
leverages the multi-view outputs generated by our diffusion
model and employs LGM for reconstruction. This demon-
strates that our method can be seamlessly integrated with
other reconstruction frameworks to enhance performance
on face reconstruction tasks. We tried to fine-tune the LGM
reconstructor with our synthetic data, but it provides inferior
results with incorrect geometry and artifacts compared with
the original weights, which we suspect is due to training
data mismatch (see details in the supplementary material).

Evaluation Metrics. We evaluate reconstruction quality
using four standard metrics: PSNR, SSIM, LPIPS [75], and
DreamSim [16]. To evaluate identity preservation, we per-
form face verification using ArcFace [14] through the Deep-
Face [52] implementation.

Implementation Details. Both Cafca [8] and Ava-256 [39]
datasets provide multi-view RGB images and correspond-
ing camera poses. However, their camera system differs
from the ones utilized in FaceLift and baselines. We re-
calculate the test camera extrinsic in each method’s camera
system. For a more accurate comparison, we use the Me-
diapipe facial landmark detection algorithm [38] to identify
facial landmarks in both the target images and the rendered
outputs, aligning them based on landmark distributions. De-
tails are provided in the supplementary material.

Our system takes approximately 8 seconds to infer a
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Method PSNR ↑ SSIM ↑ LPIPS ↓ DreamSim ↓ ArcFace ↓

GGHead [29] 10.35 0.7406 0.3636 0.3252 0.2681
PanoHead [1] 10.72 0.7594 0.3351 0.2048 0.2183
Dual Encoder [4] 10.78 0.7385 0.3922 0.2785 0.2421
Era3D [31] 13.69 0.7230 0.3662 0.2892 0.2978
LGM [56] 16.52 0.7933 0.3060 0.1552 0.2557
Our MV + LGM [56] 14.13 0.7812 0.2956 0.1282 0.1767
FaceLift 16.61 0.7968 0.2694 0.1096 0.1573

Table 1. Quantitative results on Cafca. FaceLift achieves favor-
able performance on all evaluation metrics.

Figure 5. Visual results on Cafca compared with face recon-
struction methods. FaceLift renders novel views that closely
match the ground truth, while other baselines often fail to recon-
struct the 3D head in correct colors or geometry structures.

Figure 6. Visual results on Cafca compared with general ob-
jects reconstruction methods. Comparison with general object
reconstruction methods shows the importance of specialized data.

3D Gaussian head from a single image: about 1.5 seconds
for preprocessing (background removal, rescaling, etc.), 5.5
seconds for multi-view image generation, and under 1 sec-
ond for 3D Gaussians reconstruction.

4.2. Experiments on the Cafca Dataset
We report numerical comparison results on Cafca in Tab. 1.
FaceLift performs favorably against baselines, especially on
DreamSim [16] metric, indicating high-quality perceptual
similarity. It also achieves better identity preservation per-
formance, as demonstrated by a lower ArcFace [14] dis-
tance. We show visual results in Fig. 5 and Fig. 6. FaceLift
yields rendering results that closely match the ground truth.
Compared with other baselines, GGHead [29] does not
support full-head rendering, resulting in unrealistic outputs
when the view angle significantly deviates from the input.
PanoHead [1] struggles with challenging hairstyles, while
Dual Encoder [4] produces blurred facial textures. Addi-
tionally, Era3D [31] introduces artifacts on the back of the
head, and LGM [56] yields inaccurate nose and jaw shapes,
underscoring the importance of our synthetic human head
data. When integrated with our multi-view diffusion ap-
proach, LGM achieves enhanced performance, demonstrat-
ing that our method can be seamlessly combined with exist-
ing baselines to boost their results.

Method PSNR ↑ SSIM ↑ LPIPS ↓ DreamSim ↓ ArcFace ↓

Era3D [31] 14.77 0.7963 0.2538 0.2515 0.3721
LGM [56] 14.05 0.8136 0.2476 0.1496 0.3142
Our MV+LGM [56] 15.24 0.8213 0.2292 0.1093 0.2264
FaceLift 16.52 0.8271 0.2277 0.1065 0.1871

Table 2. Quantitative results on Ava-256. FaceLift performs fa-
vorably than baseline methods in both reconstruction metrics and
identity facial identity metric, showing a better generalization abil-
ity towards real-captured human images.

Figure 7. Visual results on Ava-256. Compared with baselines,
FaceLift provides multi-view renderings that are more realistic and
similar to ground truth. Era3D fails to deliver delicate facial struc-
tures, while LGM generates inaccurate head shapes and colors.

4.3. Experiments on the Ava-256 Dataset
We further evaluate FaceLift against other baselines on a
studio-captured real human dataset, Ava-256 [50]. GAN-
inversion based methods [1, 4, 29] fail to produce reason-
able results with the test camera poses in this dataset, so
we exclude these baselines. Tab. 2 shows that FaceLift out-
performs all other baselines across all evaluation metrics,
demonstrating superior reconstruction quality and identity
preservation. It also highlights FaceLift’s strong ability to
generalize to real human faces. As shown in Fig. 7, FaceLift
achieves more realistic head synthesis, while Era3D [31]
struggles with accurate skin and hair textures, as well as
facial details. LGM [56] produces inaccuracies in the
nose shape. When combined with our multi-view diffusion
model, LGM yields more accurate geometric structures, yet
its texture quality remains inferior to that of FaceLift.

4.4. Experiments with In-the-wild Images
We collect in-the-wild human face images and present qual-
itative results in comparison with other baselines in Fig. 8.
Baseline methods often produce undesirable artifacts. For
instance, PanoHead [1] frequently fails to render the back
of the head and sometimes generates extra eyes at the rear.
It also struggles to synthesize hair, shadows, wrinkles, and
facial paint accurately, and its outputs lack multi-view con-
sistency (e.g., the girl continues to face the camera in novel
view 1 despite a changed pose). Dual Encoder [4] improves
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Figure 8. Visual comparison on in-the-wild data. FaceLift demonstrates great generalization ability and robustness towards in-the-wild
images, provides realistic unseen view rendering results. Era3D [31] and LGM [56] generate 3D head representation in inaccurate shape.
PanoHead [1] often creates severe artifacts on the back of the head and can not handle challenging hairstyles well. Dual Encoder [4] shows
improved performance on reconstructing the back of the head but exhibits more pronounced identity loss.

Figure 9. Results of FaceLift on in-the-wild images. FaceLift accurately reconstructs 3D head models under challenging lighting condi-
tions, achieving high fidelity (row 1). It captures fine facial details such as wrinkles (row 2), mustaches (row 3), and individual hairs (row
2 and row 4). Additionally, it remains robust to complex facial expressions (row 3) and various skin tones (row 4). Furthermore, it can
realistically reconstruct facial paint (row 4). More results are provided in the supplementary materials.

back-of-head rendering but suffers from severe identity loss
(row 2) and fails to accurately reconstruct face paint (row 4).
Era3D [31] often produces an inaccurate head shape, partic-
ularly from side views, and offers fewer geometric details
compared to FaceLift. LGM [56] generates Gaussians with
inaccurate color and opacity and lacks proper facial geome-
try, resulting in distorted features. Baseline Our MV + LGM

shows that our multi-view diffusion model enhances LGM
by providing improved facial geometry and texture details.
However, the LGM reconstructor still produces Gaussians
with inaccurate shapes and opacities, further underscoring
the advantages of our transformer-based reconstructor.

We present more FaceLift’s novel view rendering results
in Fig. 9 to demonstrate FaceLift’s ability to produce high-
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Figure 10. Importance of input view reconstruction. The dif-
fusion model that is not trained to perform the input view recon-
struction, i.e., w/o. Input View Reconstruction, overfits to synthetic
training distribution, suffers from severe identity loss during infer-
ence. Trained with input view reconstruction, our method pre-
serves the input identity and expression faithfully.

fidelity, realistic 3D head reconstructions with intricate de-
tails across a variety of challenging scenarios. FaceLift ef-
fectively handles faces under various lighting conditions. It
can especially render realistic novel view images given a
photo captured with an iPhone under dark lighting condi-
tions (row 1 column 1), emphasizing its robustness and po-
tential for real-world application. It reconstructs facial de-
tails with high fidelity, especially the wrinkles and folds on
the face caused by extreme expression. FaceLift also excels
at reconstructing challenging textures, such as mustaches
and hair. Furthermore, it faithfully reconstructs facial paint,
despite such data not being included in our synthetic face
dataset, showcasing its strong generalization ability.

5. Ablation Study
5.1. Input View Reconstruction
We conduct an ablation study to demonstrate the impor-
tance of reconstructing the input view during training. For
comparison, we train a multi-view diffusion model that gen-
erates six novel views. In this baseline, the first generated
view’s elevation is adjusted from 0◦ to 20◦, while the re-
maining views adopt the same camera poses as in our de-
fault setting. We refer to this variant as w/o. Input View
Reconstruction. Fig. 10 presents the view generation re-
sults of the two diffusion models when applied to real-
world images. Without the input view reconstruction task,
the model trained on the synthetic dataset generates views
within a limited distribution, leading to noticeable identity
loss. Moreover, it loses its ability to preserve facial expres-
sions and face paint. In contrast, incorporating the input
view reconstruction task during training enables our dif-
fusion model to faithfully regenerate the input view, sig-
nificantly improving its generalization ability. Quantitative
comparison is provided in the supplementary material.

5.2. Number of Views
We evaluate three configurations: four views (front, left,
right, and back), six views (adding front-left and front-
right), and eight views (further including front-top and
front-bottom). Fig. 11 compares the baselines using dif-
ferent numbers of input views. With only four views, the
reconstructor fails to capture a complete forehead; however,

Figure 11. Number of input views of Gaussian reconstruc-
tor. Using six views strike a good balance between reconstruction
quality and computational efficiency.

Figure 12. Two-stage training of reconstructor. Without pre-
training on general objects, the reconstructor fails to produce clear
textures in the reconstruction results. Meanwhile, without fine-
tuning on synthetic human head data, the model lacks a refined
understanding of facial structures, including the eyes and nose.

with six views, it reconstructs the eyes and eyebrows more
smoothly and renders challenging textures—such as facial
wrinkles and ear folds—more realistically. Eight views
do not offer significant visual improvements, and incur a
higher computational cost in both stages. Thus, we find that
six views achieve a good balance between reconstruction
quality and computational efficiency.

5.3. Two-stage Reconstructor Training
As illustrated in Sec. 3.3, our Gaussian reconstructor fol-
lows a two-stage training pipeline. Fig. 12 shows that pre-
training on general objects helps the model learn a diverse
prior of geometric structures, resulting in clearer textures on
delicate facial regions. Meanwhile, fine-tuning on synthetic
human head data enables the reconstructor to gain a more
refined understanding of facial structure, thereby enhancing
the accuracy of features such as the eyes, nose, and hair.

6. Conclusions
We propose FaceLift, a feed-forward approach that lifts a
single facial image to a detailed 3D reconstruction with
preserved identity features. Our method uses multi-view
diffusion to generate unobservable views and employs a
transformer-based reconstructor to reconstruct 3D Gaussian
splats, enabling high-quality novel view synthesis. To over-
come the difficulty of capturing real-world multi-view hu-
man head images, we render high-quality synthetic data for
training and show that, despite being trained solely on syn-
thetic data, FaceLift can reconstruct 3D heads from real-
world captured images with high fidelity. Compared with
baselines [1, 4, 29, 31, 56], FaceLift generates 3D head rep-
resentation with finer geometry and texture details and ex-
hibits better identity preservation ability.
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[58] Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In NeurIPS, 2017. 3

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 3,
5

[60] Thomas Vetter and Volker Blanz. Estimating coloured 3D
face models from single images: An example based ap-
proach. In ECCV, 1998. 1, 2

[61] Vishal Vinod, Tanmay Shah, and Dmitry Lagun. TEGLO:
High fidelity canonical texture mapping from single-view
images. In WACV, 2024. 3

[62] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. NeuS: Learning neural im-
plicit surfaces by volume rendering for multi-view recon-
struction. In NeurIPS, 2021. 3

[63] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jianmin
Bao, Tadas Baltrusaitis, Jingjing Shen, Dong Chen, Fang
Wen, Qifeng Chen, et al. Rodin: A generative model for
sculpting 3D digital avatars using diffusion. In CVPR, 2023.
3

[64] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. ProlificDreamer: High-fidelity
and diverse text-to-3D generation with variational score dis-
tillation. In NeurIPS, 2024. 3
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FaceLift: Learning Generalizable Single Image 3D Face Reconstruction from
Synthetic Heads

Supplementary Material

1. Overview
This supplementary material presents additional results to
complement the main manuscript. We first provide a sup-
plementary video showcasing additional visual results. We
then provide further experiments in Sec. 3, including a com-
parison with DimensionX [55], additional visual results of
FaceLift on in-the-wild images, additional ablation study
results and an autoregressive generation pipeline to apply
FaceLift on videos to achieve 4D rendering. We deliver
more details on our method in Sec. 4 and illustrate exper-
imental details in Sec. 5. Finally, we discuss the limitations
of FaceLift in Sec. 6.

2. Supplementary Video
Please refer to our supplementary video for a more compre-
hensive visualization of the results. The video includes ad-
ditional examples of single-image-to-3D head reconstruc-
tion, demonstrations in the interactive viewer, and results
showcasing video-based input for 4D novel view synthesis.

3. Additional Experiments
3.1. Comparison with DimensionX
We provide additional comparison results on single image
to 3D tasks with a state-of-the-art video diffusion model,
DimensionX [55]. DimensionX is a framework designed to
generate photorealistic 3D and 4D scenes from a single im-
age with video diffusion. The results are shown in Fig. 13.
As a video diffusion model, DimensionX struggles to pro-
duce multi-view consistent results and lacks a clear spatial
understanding of head shapes. As a result, it often gener-
ates eyes gazing in the wrong direction and ears positioned
incorrectly, along with inaccurate shoulder shapes. In con-
trast, FaceLift generates highly realistic 3D human heads
while also producing more visually striking hair.

3.2. Comparison with Mesh-based Methods
We provide comparison results with mesh-based recon-
struction methods InstantMesh [70], Unique3D [67], and
TRELLIS [69] on the Cafca dataset [8]. Quantitative re-
sults are shown in Tab. 3, and quantitative comparisons are
shown in Fig. 14. Results show that mesh-based reconstruc-
tion methods fail to provide realistic hair texture and de-
tailed skin wrinkles. Meanwhile, thanks to the input view
reconstruction strategy, FaceLift achieves superior identity
preservation.

Figure 13. Visual comparison with DimensionX [55]. Dimen-
sionX frequently produces inaccuracies in the back of the head and
the shoulder shapes. Other common issues include misaligned ears
and eyes gazing in incorrect directions. Additionally, controlling
camera poses is challenging. In contrast, FaceLift delivers results
that are significantly more consistent across multiple views while
enabling the generation of more visually appealing hair.

Figure 14. Visual results on Cafca compared with mesh-based
reconstruction methods. Compared to mesh-based reconstruc-
tion methods, our use of pixel-aligned 3D Gaussians offers clear
advantages: the semi-transparent kernels naturally capture com-
plex visual phenomena such as hair strands and fine wrinkles.

Method PSNR ↑ SSIM ↑ LPIPS ↓ DreamSim ↓ ArcFace ↓

TRELLIS [69] 12.74 0.7412 0.3746 0.2170 0.4001
Unique3D [67] 14.27 0.7643 0.3188 0.1277 0.2088
InstantMesh [70] 16.44 0.7815 0.2792 0.1504 0.2741
FaceLift 16.61 0.7968 0.2694 0.1096 0.1573

Table 3. Quantitative results on Cafca compared with mesh-
based reconstruction methods. FaceLift achieves better quan-
titative results with more suitable representations and specialized
training data.
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Figure 15. Ablation study on synthetic data lighting condition.
Models trained only with ambient light struggle to handle shadows
and strong lighting.

Baseline PSNR ↑ SSIM ↑ LPIPS ↓ DreamSim ↓ ArcFace ↓

w/o Input View Reconstruction 16.02 0.7884 0.2893 0.1438 0.2367
w/o Multi-view Attention 16.29 0.7885 0.2861 0.1552 0.2126
Full Model 16.61 0.7968 0.2694 0.1096 0.1573

Table 4. Quantitative results of ablation studies. FaceLift
achieves better quantitative results with more suitable represen-
tations and specialized training data.

3.3. Additional Results on In-the-wild Images
We present additional results on in-the-wild images in
Fig. 24, Fig. 25 and Fig. 26. FaceLift demonstrates the
ability to effectively handle diverse hairstyles and beards.
Notably, it excels at hallucinating unobservable hairline
splits and synthesizing the transparent properties of hair us-
ing Gaussians with low opacity. Our method reconstructs
photo-realistic 3D heads under various lighting conditions
and can be further extended to the reconstruction of cartoon
characters.

3.4. Additional Ablation Study
Importance of Data with Diverse Lighting. We use syn-
thetic data to train our models, which offers the advantage
of controlling lighting conditions and rendering head im-
ages under various lighting scenarios. In contrast, real-
world human data is typically captured in a studio with
lighting similar to ambient light, as shown in the input of
Fig. 2. To highlight the importance of training models with
diverse lighting conditions, we train FaceLift with (1) Data
rendered with only ambient light, and (2) Data rendered in
random HDR environment light. We present the visual re-
sult comparison in Fig. 15. The model trained exclusively
on ambient light data struggles to understand shadows, of-
ten generating hair-like textures on the face. Furthermore,
when exposed to strong light, it produces white regions on
the face. In contrast, the model trained with random HDR
environment light generates smooth transitions between re-
gions with different lighting conditions.

More Results on Input View Reconstruction. We show

training samples for two baselines w/o. Input View Recon-
struction and w. Input View Reconstruction in Fig. 16. As
the target views are different, baseline w/o. Input View Re-
construction is trained to generate six images with novel
camera poses, while baseline w. Input View Reconstruc-
tion reconstruct the input image and generate five images
with novel poses. Inference results on real world images
are displayed in Fig. 17 to illustrate the importance of re-
constructing the input image during multi-view diffusion
training. The results demonstrate that input view regenera-
tion prevents the model from being confined to the training
data distribution, thereby enhancing its ability to preserve
identity. Quantitative results of baseline w/o. Input View
Reconstruction is shown in Tab. 4.

3.5. Applying FaceLift on Videos

FaceLift can be directly applied to video frames and achieve
high-quality facial reconstructions with consistent visual
identity and accurate facial expression, as shown in Fig. 18.
However, since FaceLift is not trained on video data, many
full-head details are generated independently by the dif-
fusion models, resulting in subtle flickering. In this sup-
plemental document, we introduce a simple yet effective
method that leverages FaceLift and autoregressive training
to achieve high-quality, temporally smooth 4D facial recon-
structions.

Given an input video {F0, F1, . . . FT }, we process each
video frame Ft sequentially to generate a set of 3D Gaus-
sian sequences {G0, G1, . . . GT }, where each Gt repre-
sents the obtained Gaussian representation at timestamp t.
As each Gt is generated from frame It without interaction
with other frames, directly rendering from this Gaussian se-
quence creates artifacts resulting from time-inconsistency.
Hence, we propose an autoregressive generation pipeline,
as shown in Fig. 19.

We first select an anchor frame at timestamp t (marked
with blue box), and treat its corresponding 3D Gaussian
splats as the canonical Gaussians Gt (marked with blue
box). Then, for a following timestamp t+ 1, we train a de-
formation network Dt to predict Gaussian splats G′

t+1 de-
formed from Gt supervised by rendering results from Gt.
The deformation network is an 8-layer MLP, which takes
the x, y, z position of each Gaussian in Gt as input and pre-
dicts ∆x, ∆y, ∆z, opacity change ∆α and scale change
∆s. These deformation parameters are combined with Gt

to generate G′
t+1, as shown in Fig. 20.

To train the deformation network, we render six views
with the same camera poses as the multi-view diffusion out-
puts from G′

t+1, and the renderings of the same camera
poses from Gt+1 are used as pseudo ground truth super-
vision. Then we treat G′

t+1 as the initial Gaussians and
train deformation network Dt+1 to generate G′

t+2. Itera-
tively, we will get a Gaussian sequence {G′

0, G
′
1, . . . , G

′
T }.
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Figure 16. Training images used in the study of input view reconstruction. We show example images for training baselines w/o. Input
View Reconstruction and w. Input View Reconstruction. The difference lies in the elevation of the first target image.

Figure 17. Importance of input view reconstruction. The diffusion model without input view reconstruction training suffers from
identity loss. Additionally, it fails to generate accurate face paint (row 1), diverse hair colors (row 2), varied expressions (row 3 and 4), and
accessories (row 5).

14



Figure 18. Results of directly applying FaceLift to video input.
By processing each video frame independently, FaceLift generates
a sequence of Gaussians that preserves consistent visual identity
and accurately captures facial expressions. However, this baseline
does not consider temporal consistency.

Given any timestamp, we can select the corresponding 3D
Gaussians from this Gaussian sequence and render from
any given pose. The results of this method are shown in
Fig. 21, which demonstrate improved temporal consistency
while preserving identity and achieving accurate expression
modeling. Please refer to the supplementary video for addi-
tional video rendering results.

4. Method Details

4.1. Details on View Generation

Given a single near frontal view face image with azimuth
α, the multi-view diffusion model will generate six views
with azimuths equal to {α, α ± 45◦, α ± 90◦, α + 180◦},
covering 360 degrees of the human head. All images, both
input and generated output, maintain a zero elevation angle,
ensuring consistent horizontal viewpoints. The generated
views consist of: a reconstructed front view matching the
input image; left and right profiles capturing the sides of the
head; and a back view that synthesizes hair structure and
color based on the frontal input and learned priors. We also
generate three-quarter views (left-front and right-front) to
enhance facial details in the following reconstruction stage.

To generate unseen views of the human head, we refor-
mulate view synthesis from a single image as a conditional
diffusion process. Specifically, we employ a DDPM-based
diffusion model fD to generate N distinct views, denoted
X1

0 , X
2
0 , . . . , X

N
0 , from a single front-facing image y and

corresponding text embeddings e1, e2, . . . , eN . This pro-
cess can be expressed as:

{X1
0 , X

2
0 , . . . , X

N
0 } = fD

(
y, {e1, e2, . . . , eN}

)
. (5)

Our objective is to learn the joint distribution of these views
conditioned on the input image and text embeddings. We
denote this joint distribution as:

pθ(x
1:N
0 | y, e1:N ) ≡ pθ

(
{x1

0, . . . , x
N
0 } | y, {e1, . . . , eN}

)
.

(6)
In the following discussion, we omit the condition y and
e1, e2, . . . , eN for simplicity. The joint distribution as
pθ(x

1:N
0 ) is characterized by a Markov Chain (reverse pro-

cess):

pθ(x
1:N
0:T ) = pθ(x

1:N
T )

T∏
t=1

pθ
(
x1:N
t−1 | x1:N

t

)
= pθ(x

1:N
T )

T∏
t=1

N∏
n=1

pθ
(
xn
t−1 | x1:N

t

)
,

(7)

where pθ(x
1:N
T ) = N (x1:N

T ; 0, I) and pθ(x
n
t−1 | x1:N

t ) =
N(xn

T ;µ
n
θ (x

1:N
t , t), σ2

t I). µθ(x
1:N
t , t) is a trainable compo-

nent while the variance σ2
t is untrained time-dependent con-

stants. To learn µθ for generation, a Markov chain called
forward process is constructed as:

q
(
x1:N
1:T | x1:N

0

)
=

T∏
t=1

q
(
x1:N
t | x1:N

t−1

)
=

T∏
t=1

N∏
n=1

q
(
xn
t | xn

t−1

)
,

(8)

where q
(
xn
t | xn

t−1

)
= N

(
xn
t ;
√
1− βt x

n
t−1, βtI

)
, and

βt are constants. DDPM [22] shows that by defining

µn
θ (x

1:N
t , t) =

1
√
αt

(
xn
t −

βt√
1− ᾱt

ϵθ
(
x1:N
t , t

))
. (9)

αt and ᾱt are constants derived from βt and ϵθ is a noise
predictor. We learn ϵθ by

ℓ = Et,x1:N
0 ,n,ϵ1:N

[
∥ϵn − ϵnθ (x

1:N
t , t)∥2

]
, (10)

where ϵ1:N is the Gaussian noise of size N×H×W added
to all N views, and ϵnθ is the noise predictor on the nth

view. We provide ablation study results of the multi-view
attention mechanism in Tab. 4.

5. Experimental Details
5.1. Details on Benchmark Evaluation
Test Camera Extrinsic. Both the Cafca [8] and Ava-
256 [39] datasets offer multi-view RGB images along with
corresponding camera poses. However, their camera sys-
tems differ from those used in FaceLift and the baselines.
Directly applying their camera poses for inference is in-
feasible. Hence, we recalculate the test camera extrinsic
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Figure 19. Autoregressive Generation for 4D Rendering. ”AR Gaussians” denotes autoregressively generated Gaussians. With FaceLift,
each video frame is independently converted into a 3D Gaussian representation. An anchor frame at timestamp t (highlighted by the blue
box) produces Canonical Gaussians Gt, which are then deformed into the representations for subsequent frames, G′

t+1, G′
t+2, . . . , etc.

This deformation is supervised by the rendered output Gaussians Gt+1, Gt+2, . . . , etc., produced by FaceLift. Iteratively applying this
process yields a temporally consistent Gaussian sequence that supports rendering from any viewpoint.

Figure 20. Deformation Network. The deformation network Dt

is an eight-layer MLP that predicts geometric deformations, in-
cluding positional shifts, opacity adjustments, and scale changes.
Combined with the Gaussian representations from the previous
frame G′

t, it forms the Gaussian representation for the next frame
G′

t+1.

in each method’s camera system with the following proce-
dure. The Ava-256 dataset uses a world coordinate system
with the origin set at one of the camera positions. We first
re-center the world coordinate origin to the midpoint of all
camera locations, which is approximately the center of the
human head. This step is unnecessary for the Cafca dataset,
as its world coordinate origin is defined as the head’s center.
Next, we compute the rotation transformation from the test
camera pose to the input camera pose within the dataset’s
coordinate system. We then apply the same transforma-
tion to the input camera pose in each method’s camera sys-
tem and rescale the translation to match the settings of each
method to get the test camera extrinsic under each method’s
camera system. After applying the camera pose transforma-
tion, perfect alignment is not achieved due to differences in

camera distance and intrinsic parameters. To address this,
we manually crop and scale the rendered images for closer
alignment with the target images.
Facial Landmark Alignment. To align two images based
on their facial landmarks, we first compute the geometric
transformations—scale and translation—that align the land-
marks of one image with the landmarks of the other. Given
an input image I1 and two sets of corresponding facial land-
marks L1 and L2, we begin by calculating the centroids of
the landmark sets, centering the landmarks around their re-
spective centroids. Next, we compute the uniform scaling
factor and translation vector that minimize the difference
between the centered landmarks. These transformations are
then applied to the input image I1, producing the trans-
formed image It in which the facial landmarks are aligned
with those of L2. This process is illustrated in Algorithm 1.

5.2. Implementation Details
Multi-view Diffusion. Our multi-view diffusion model is
built based on the open-source latent diffusion framework,
Stable Diffusion V2-1-unCLIP model [49]. The model is
trained on eight A100 GPUs (each with 80 GB of memory)
using a batch size of 64 over 20,000 steps, with a learn-
ing rate of 1e-4. For classifier-free guidance (CFG) [21],
the CLIP condition was randomly omitted at a rate of 0.05
during training. During inference, we utilized the DDIM
sampler [54] with 50 steps and a guidance scale of 3.0 to
generate multi-view images. Both the input and output im-
ages have a resolution of 512×512.
Transformer-based Gaussian Reconstructor. The train-
ing of the reconstructor follows [74]. During each train-
ing step, we randomly sample a set of 8 images (4 as input
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Figure 21. Results of applying FaceLift on video. Our proposed autoregressive generation pipeline enables FaceLift to be applied directly
to video sequences, achieving 4D novel view synthesis – rendering at any given timestamp and camera pose. Video results are shown in
the supplementary material.

Algorithm 1: Image Alignment via Facial Land-
marks

Input: Image I1, Landmarks L1, L2

Output: Transformed image It
1 Function

GetTransformFromLandmarks(L1, L2):
2 Compute centroids C1, C2 of L1, L2;
3 Center landmarks: L′

1 ← L1 − C1,
L′
2 ← L2 − C2;

4 Compute scale: s←
∑

(L′
1·L

′
2)∑

(L′
1·L′

1)
;

5 Compute translation: t← C2 − s · C1;
6 return s, t;

7 Function ApplyTransformToImage(I, s, t):
8 Create transformation matrix M ;
9 Transform image: It ← warpAffine(I,M);

10 return It;

11 Function
TransformImageWithLandmarks(I1, L1, L2):

12 Compute s, t←
GetTransformFromLandmarks(L1, L2);

13 Transform image:
It ← ApplyTransformToImage(I1, s, t);

14 return It;

views and 4 as supervision views) from either 32 ambient
light renderings or 25 random HDR environment light ren-
derings. Both input and output images are rendered at a
resolution of 512×512. The model is fine-tuned for 20,000

Figure 22. Visual Comparison with LGM. Leveraging the out-
puts of our multi-view diffusion model enhances the performance
of LGM [56] (denoted as Our MV + LGM). We further fine-tuned
LGM using our synthetic human head data, resulting in Our MV
+ Fine-tuned LGM; however, its performance was inferior to that
achieved with the original weights in Our MV + LGM.

steps using eight A100 GPUs, each equipped with 40 GB of
memory.

For a fair comparison, we also fine-tune LGM [56] with
our synthetic data with their provided training codes. How-
ever, the fine-tuned LGM achieves inferior performance
than the original weights, as shown in Fig. 22.
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Figure 23. Limitation of FaceLift. Due to the absence of acces-
sories in the training data, our method often generates hair-like tex-
tures to approximate hats. Additionally, it occasionally produces
extraneous hair when encountering out-of-distribution images.

5.3. Datasets
Cafca Dataset. The Cafca dataset [8] comprises 1,500
identities, 30 camera poses, 13 expressions, and three en-
vironments. From this, we select 40 identities, as detailed
in Tab. 5. We utilize the first expression and the first en-
vironment (folder 00000 000) for each identity. The input
view and test views corresponding to each identity are also
specified in Tab. 5.

Ava-256 Dataset. The Ava-256 dataset [39] consists of 256
identities, each captured by 80 cameras, with over 5,000
frames per camera. For qualitative evaluation, we select
10 identities, each with 10 test camera views. All selected
frames feature natural expressions. We use camera 401168
as the input view, as it captures the front view of the faces
and is positioned at the center of Ava-256’s world coordi-
nate system. The input view, test view, and corresponding
frame IDs are detailed in Tab. 6.

6. Limitations
FaceLift achieves high-fidelity, photorealistic 3D head re-
construction from a single input image. It provides detailed
representations of hair and skin texture while demonstrating
superior identity preservation compared to existing meth-
ods. Despite these appealing results, our approach has cer-
tain limitations. First, our synthetic dataset does not include
accessories such as hats or glasses. As a result, when the in-
put image features a hat, the model may generate hair-like
textures to approximate the back of the hat, as illustrated in
Fig. 23, row 1. This limitation could be addressed by in-
corporating synthetic data with accessories. Additionally,
when handling out-of-distribution inputs, such as those in
Fig. 23, row 2, the model occasionally generates extraneous
hair. This issue might be mitigated by refining the train-
ing data distribution or introducing text prompts to enhance
control over the multi-view diffusion generation process.

Finally, in some cases, the unseen regions of the face ap-
pear more blurred than the visible areas (frontal face). Our
system emphasizes detailed reconstruction of the front face:
most views generated by the diffusion model concentrate on
the frontal region, and the input-view reconstruction strat-
egy faithfully preserves its features. In contrast, features of
the back of the head are primarily learned from synthetic
data. Additionally, when simulating lighting, the model
tends to darken the back head and introduce shadows, of-
ten causing the hair to appear black.
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Figure 24. Results of FaceLift on in-the-wild images. FaceLift excels at reconstructing intricate and diverse facial hair, encompassing a
wide array of hairstyles and hair colors. It also accurately captures a broad range of skin tones.
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Figure 25. Results of FaceLift on in-the-wild images. FaceLift also demonstrates the ability to reconstruct faces exhibiting a wide range
of pose variations. It can also accurately handle extreme expressions.
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Figure 26. Results of FaceLift on in-the-wild images. FaceLift realistically reconstructs detailed facial textures. Additionally, FaceLift is
well-suited for reconstructing cartoon characters.
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ID Input View Test Views

00000 26 00 02 06 08 10 11 12 13 17 19 20 23 24 26

00002 12 00 03 04 05 06 07 08 09 12 13 15 17 21 22 23 24 25

00004 07 03 04 07 09 10 11 18 19 23 24 25 26 27 29

00005 15 01 02 06 07 08 10 11 13 15 18 19 20 21 23 26 27 28

00006 27 00 02 10 19 20 23 27

00007 09 03 04 09 11 13 15 16 17 19 21 24 26 28

00010 24 02 04 08 10 12 13 14 15 17 21 22 23 24 25 26 27 28 29

00011 07 02 05 07 09 11 12 14 16 24 27 29

00014 03 02 03 06 12 14 17 22 23 25 28 29

00015 22 00 02 04 06 09 12 14 15 20 22 24 27 28

00017 12 01 02 07 12 14 15 16 17 20 22 23 24 25 26

00018 08 00 02 06 08 09 13 16 18 20 25 26

00019 14 00 04 05 06 10 12 13 14 16 17 18 20 21 22 26 28

00020 01 00 01 03 04 06 07 10 14 16 17 19 22 23 25 26 27 29

00021 11 02 03 05 07 08 09 11 14 15 17 19 21 22 23 26

00022 18 00 01 03 07 08 09 11 12 17 18 19 21 22 24 26 28

00023 03 00 03 05 06 08 12 14 18 24 25 27

00028 18 04 05 06 10 12 13 16 18 19 22 24 25 28 29

00030 21 00 01 02 03 06 07 08 11 14 17 19 21 22 24 26

00033 03 00 03 06 11 12 13 15 19 21 22 24 27 28

00034 10 01 06 07 09 10 13 15 16 17 18 19 23 25 28

00048 04 00 01 02 04 05 06 07 10 12 15 20 23 24 25 27 28

00051 26 03 07 10 11 15 17 19 21 22 24 26 28 29

00056 07 00 01 02 07 08 12 14 15 17 18 20 21 22 23 24 25 28 29

00057 11 00 01 02 03 05 06 08 11 12 14 17 18 19 22 26 29

00063 01 01 02 05 08 09 11 13 14 16 17 18 20 22 25 26 28 29

00066 13 01 05 06 07 12 13 21 22 26 27

00068 12 00 01 06 10 12 14 16 19 21 22 25 26 27

00072 25 02 04 05 10 12 13 14 17 25 26

00078 20 00 02 03 05 06 07 08 12 13 14 15 16 17 18 20 24 25 28 29

00080 08 01 03 04 05 06 08 10 12 14 15 16 17 22 24 26

00082 16 05 06 07 09 13 16 17 19 20 23 25 27

00083 16 00 02 03 04 05 08 09 13 14 16 17 19 21 22 24 25 27 29

00084 01 02 04 08 09 11 12 14 16 17 18 19 23 28 29

00086 13 00 01 03 04 08 09 13 14 17 18 19 20 22 23 24

00087 01 00 01 02 04 07 08 09 12 15 16 17 18 21 24 26 27

00094 08 02 05 08 09 12 19 24 25 27

00095 08 00 01 03 04 08 09 10 11 13 14 18 19 20 21 24 28 29

00096 01 01 05 07 10 12 17 19 21 22 28

00099 00 00 02 03 04 05 07 08 09 12 14 15 16 17 20 21 23 25 29

Table 5. Identities and views used for the experiment on Cafca.

ID Frame ID Input View Test Views

20210810–1306–FXN596 029693 401168

400944 400981 401031
401075 401163 401175
401292 401303 401316

401463

20210827–0906–KDA058 028930 401168

400944 401031 401071
401163 401166 401292
401316 401408 401410

401458

20210901–0833–LAS440 027655 401168

400944 401031 401161
401163 401172 401292
401303 401316 401410

401458

20210929–0827–MCR809 029457 401168

400981 401070 401158
401166 401173 401305
401313 401408 401410

401458

20211001–0855–KJJ701 032309 401168

400939 401031 401163
401166 401292 401316
401408 401410 401452

401458

20220215–0801–ONK705 027201 401168

400944 401031 401045
401163 401166 401172
401408 401410 401463

401469

20220310–1128–ZSC414 028601 401168

400942 401031 401045
401163 401164 401166
401303 401408 401410

401411

20220712–1040–JEH262 030060 401168

400944 400981 401031
401045 401163 401408
401410 401452 401458

401469

20220809–1321–UTC375 027432 401168

401031 401071 401163
401166 401175 401292
401303 401452 401458

401469

20220818–1653–SSF476 036588 401168

400981 401031 401071
401163 401166 401175
401408 401410 401458

401469

Table 6. Identities and views used for the experiments on Ava-256.
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